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Abstract: Transparency is an important factor for robots, 
autonomous systems and AI, if they are to be adopted into our 
lives and society at large. Explanations are one way to provide 
such transparency and natural language explanations are a 
clear and intuitive way to do this, helping users to understand 
what a robot or AI is doing and why. In this abstract, we 
highlight the importance of defining what makes a good 
explanation. Furthermore, we discuss evaluation methods for 
explanations by leveraging existing natural language 
generation evaluation metrics. 
  
Human-Robot Interaction (HRI) is a field of study dedicated to 
understanding, designing, and evaluating robotic systems, with 
the aim of creating a meaningful interaction between robots and 
humans. In recent years, robotic systems have increased in 
complexity and this has led to the need to explain their behaviour 
and reasoning, in order to better understand their capabilities and 
prevent errors. This aligns with the EPSRC Principles of 
Robotics, “Robots are manufactured artefacts. They should not be 
designed in a deceptive way to exploit vulnerable users; instead, 
their machine nature should be transparent” (EPSRC, 2020). 
 
Presently, robot behaviour can be perceived as providing too little 
information about the robot’s intent and internal workings. This 
prohibits clear mental models of what it can and cannot do for the 
user but also this lack of transparency can inhibit progress from 
the developer’s perspective (Wortham et al. (2017)). This, in turn, 
raises ethical and safety concerns. With regards to AI, EU GDPR 
introduced the “right to explanation” in the Article 22 “Automated 
individual decision-making, including profiling” GDPR in 2018. 
According to the above-mentioned regulations and principles, 
there is no doubt that we need a level of transparency and that this 
transparency may need to be communicated to the user. The 
importance of explanations for building trust and transparency in 
intelligent systems has been investigated by several researchers 
(Kulesza et al., 2012; Lim et al., 2009; Bussone et al., 2015) and 
previous work has shown that explanations can increase user 
understanding (Garcia et al., 2018) and trust in an intelligent 
system (Lim et al., 2009). 
  
The question is how do we define what a good explanation is? 
Effective questioning (Wilen and Jr., 1986), a method of 
explanation in pedagogy, could help us to define a strategy for 
creating different types of explanations, but this is not sufficient. 
It is necessary to extract the main properties/attributes of an 
explanation in order to decide what makes a good or bad 

explanation. Zemla et al. (2017) consider that an explanation can 
have the following attributes: alternatives, articulation, 
complexity, desired complexity, evidence credibility, evidence 
relevance, expert, external coherence, generality, incompleteness, 
internal coherence, novelty, perceived expertise, perceived truth, 
possible explanation, principle consensus, prior knowledge, 
quality, requires explanation, scope and visualisation and 
according to Yuan et al. (2011), an explanation should be precise 
and concise. How do we know which of these factors are 
important and contribute the most to an effective explanation and 
how do they vary depending on the user and the context? 
 
We consider that an intuitive medium to provide explanations is 
through natural language. There has been much work on natural 
language generation (NLG) evaluation (Hastie and Belz, 2014; 
Novikova et al., 2017) and we can potentially use these NLG 
measures to gauge the quality of an automatically generated 
explanation and even similarity to a ‘gold standard’ explanation 
using automatic measures from machine translation such as 
BLEU (Papineni et al, 2002) and ROUGE (Lin, 2004). In this 
abstract, we focus on four important properties of explanations 
that intersect between NLG and XAI namely: informativeness, 
readability, clarity, effectiveness. 
  
Firstly, informativeness is linked with accuracy and adequacy and 
“targets the relevance and correctness of the output relative to the 
input specification” (Novikova et al., 2018). Secondly, readability 
can be measured using automatic objective measures but also 
human subjective evaluation. Automatic evaluation could be done 
by applying traditional readability indices that could be used to 
evaluate explanations e.g. Flesch Kincaid (Ease, 2009), FOG 
(Gunning, 1969). Human Evaluation for readability could be 
achieved by asking a target group to rate explanations for reading 
ease and comprehensibility (TAUS, 2014). Thirdly. according to 
Manishina (2016), important semantic formalisms are clarity and 
intuitiveness. Natural language explanations represent “support 
sentences”, which are sentences that provide further information 
about the topic sentence through examples, reasons, or 
descriptions (McWhorter, 2016). Evaluating explanations in 
terms of clarity could focus on linguistic phenomena such as the 
misplaced or dangling modifiers, wordiness and redundancy and 
tense. Correct syntax is not the only factor to affect clarity and can 
also include many other factors, such as how to introduce 
concepts and ideas new to the user in a way that is appropriate to 
their knowledge and previous experience. For this, we can turn to 
the fields education and intelligent tutoring systems for 



inspiration (Graesser, 2016). Fourth with regards effectiveness, as 
mentioned by Tintarev and Masthoff (2007), effective 
explanations should help humans make good decisions. 
Effectiveness could be evaluated by calculating the difference of 
understanding in a model before and after providing the 
explanation and validity of any resulting decision. This could be 
achieved through gamifying a task to reward for good decisions 
(Gkatzia et al., 2017) or comparing a user’s understanding before 
and after an explanation (Garcia et al., 2018). 
In conclusion, there is a clear need to define evaluation metrics 
for natural language explanations, in order to decide what makes 
a good or bad explanation and thus, in turn, increase transparency 
and avoid confusion and misunderstanding. Our current work is 
concerned with explaining causal Bayesian Networks where 
participants evaluate human explanations for graphical models, in 
terms of informativeness, clarity and effectiveness, taking 
inspiration from existing natural language generation evaluation 
metrics. Other properties of explanations, such as scrutability, 
satisfaction, persuasiveness, efficiency, soundness, coherence and 
understandability, will be taken into consideration for future 
research. It’s clear that this is a multidisciplinary endeavour and 
factors from fields such as linguistics, NLP/NLG, cognitive 
science, psychology, pedagogy, as well as robotics and 
engineering will need to be considered. 
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